
BBC micro:bit Cookbook

for kids, with kids, by kids.

codekingdoms

0 1 2 3V GND

Using the Code Kingdoms
JavaScript editor

Contents

Introduction & Accessing the editor 2

Tour of the Code Kingdoms JavaScript editor 3

Tutorial system & Comments within code 4

Error checking system 5

Learning Outcomes 6

Earning Open Badges 8

Recipe 1: Roll the Dice [Are You Feeling Lucky?] 10

Recipe 2: Mood Swing 11

Recipe 3: Flashpoint 14

Recipe 4: Worst. Snake. Ever. 20

Recipe 5: Quickfinger 24

Recipe 6: Maze Runner 27

Challenges and solutions 32

1

Introduction

The Code Kingdoms JavaScript editor we are contributing to the BBC micro:bit began life as part of
Code Kingdoms, a game that teaches children to code. We have decoupled and improved the
editor to sit alongside the Python editor, Block Editor and Touch Develop as one of the tools to
program the BBC micro:bit.

Our drag-and-drop interface makes the editor accessible to beginners and our “slider” supports the
transition to text-based programming as learners’ coding skills progress.

This booklet guides you through six different games of increasing difficulty to program your BBC
micro:bit. The first three games have step-by-step instructions, or recipes, that make
familiarisation with different parts of the editor straightforward. The latter three games require you
to build upon the skills and knowledge learned in the early games and, therefore, provide less
guidance. Each activity has an idea for an extension which will add complexity to the game.

All of the recipes are supported by the tutorial system within the editor. Users can choose the game
they want to build from the tutorial tab in the left sidebar, and the editor will guide them towards
completion. As with this written guide, the first three tutorials provide much more support and are
primarily aimed at being used with the visual editor, whereas the latter three will be based in the
textual view of the editor and provide a skeleton of the code that needs to be written.

The coded solutions to each game are listed on the Challenges and Solutions page of this guide.

Accessing the editor

The CK JavaScript editor is best accessed using Google Chrome as your web browser.

1. Visit: microbit.co.uk/create-code

2. Select ‘New Project’ under the CK JavaScript editor

2

Tour of the Code Kingdoms JavaScript editor

What is it? What is it for?

1. Main coding window Writing code! This is where you can drag blocks of code or use a
text input to write programs.

2. Menu a. micro:bit - access code chunks to control the behaviour of
the micro:bit

b. Library - Math, Random and Globals code libraries
c. Language - access to loops and conditionals
d. Snippets - allows you to copy and save snippets of code for

later use
e. Tutorial - guidance to complete the coding activity

3. Action buttons Run and compile your code and return to My Scripts.

4. Slider Transitioning between drag-and-drop code and text-based input
to support learner progression. Also a useful tool for motivating
learners and differentiating activities.

5. micro:bit simulator Test out your code on the micro:bit simulator before compiling it to
your device.

3

Tutorial System

The editor’s in-built tutorial system guides you through the recipes in this booklet. The guidance for
each recipe is found under the tutorial tab:

The first three recipes have tutorials with close guidance whereas the second three place a greater
emphasis upon discovering how to complete the recipe yourself.

Comments within code

Part of the tutorial system includes comments which aren’t compiled as code but are designed to
provide additional guidance. Comments are signalled by two forward slashes at the beginning of
the line:

E.g. // this is a comment

You can add comments to your code by using the ‘raw code’ setting of the slider which allows you
to type the comment you wish to include.

4

Error Checking System

The error checking system helps alert you to errors in your code and how to fix them, particularly
when transitioning to using the text-based input.

You are alerted to incorrect code by the slider turning red and yellow and a red cross next to the line
of code that requires attention, as shown in the image below.

 In this instance, there is a number missing from inside the brackets on line 4.

5

Learning outcomes

The learning outcomes are taken from the Computing at School Progression Pathways document.
Each outcome is constructed using the colour of the progression level and the strand of learning it
relates to.
E.g. the code OA2 = Orange / Algorithms / Statement 2.

 Recipe Name Learning Outcomes

Roll the dice • I can create a simple program in a visual language. (PP1)
• I can execute, check and change a program. (PP2)
• I understand that programs execute by following precise instructions. (PP3)
• I use care and precision to avoid errors. (PA3)

Extension: Display the number as would be displayed on a die.
• I can design a simple algorithm using selection (if) statements. (YA2)
• I can use logical reasoning to predict outcomes. (YA3)

Mood swing • I understand that algorithms are run on digital devices as programs. (YA1)

• I can design a simple algorithm using loops and if statements. (YA2)
• I can use arithmetic operators, if statements, and loops, within programs. (YP1)
• I can detect and correct errors (debug) my programs. (YP3)

Extension: While the micro:bit is sad lower the brightness, and increase if happy.
• I can use logical reasoning in conditions and am aware of inputs. (OA3)
• I can create programs that implement a solution to achieve given goals. (OP1)

Flashpoint • I can design solutions that use repetition and if, then and else. (OA1)

• I can use logical reasoning to predict outcomes. (YA3)
• I can declare and assign variables. (OP2)
• I can detect and correct errors (debug) my programs. (YP3)

Extension: Implement a best of 3 scoring system for players
• I can create programs that implement a solution to achieve given goals. (OP1)
• I can use a (post-tested) while loop, and if, then (and else) statements. (OP3)

6

 Recipe Name Learning Outcomes

Worst.
Snake.
Ever.

• I can design solutions that use repetition and if, then and else. (OA1)
• I can use logical reasoning in conditions and am aware of inputs. (OA3)
• I can create programs that achieve given goals. (OP1)
• I can declare and assign variables. (OP2)
• I can use a (post-tested) while loop, and if, then (and else) statements. (OP3)

Extension: Implement wrapping around the edges so the player goes to other side
• I understand when to use if, and if, then and else statements. (BP1)
• I can decompose a problem into parts and create sub-solutions for them. (BA2)

Quickfinger • I can design solutions that use repetition and if, then and else. (OA1)
• I can use logical reasoning in conditions and am aware of inputs. (OA3)
• I can use a variable and relational operators to govern termination of a loop. (BP2)
• I can use a (post-tested) while loop, and if, then (and else) statements. (OP3)

Extension: Implement up/down arrow into game which requires tilting
• I can decompose a problem into parts and create sub-solutions for them. (BA2)
• I recognise that different solutions exist for the same problem. (BA3)

Maze runner • I understand that iteration is the repetition of a process such as a loop. (PuA1)

• I can represent a solution using a structured notation. (PuA3)
• I understand when to use if, and if, then and else statements. (BP1)
• I can use a variable and relational operators to govern termination of a loop.(BP2)
• I can use a (post-tested) while loop, and if, then (and else) statements. (OP3)

Extension: Implement tilting forward and back between additional maze levels
• I can identify patterns in situations and can use these to solve problems (PuA4)
• I can decompose a problem into parts and create sub-solutions for them. (BA2)

7

Code Kingdoms, Makewaves & Open Badges

Using the Recipes created by Code Kingdoms for the BBC micro:bit editor, upload your completed
program either as a screenshot or using the HEX file directly. You can then claim your Open Badge
through the Makewav.es platform - all of the badges can be found here.

Recipe #1 - By the end of this activity, we will be able to shake a random
number out of our micro:bit!

● Create a simple dice using random numbers

Recipe #2 - By the end of this activity, we will have a micro:bit that is sad
when it is tilted away, and happy when it is facing us!

● Create a program that makes the micro:bit sad when tilted away,
and happy facing the user!

Recipe #3 - By the end of this activity, we will have a micro:bit that will
start a 2-player game when shaken.
The aim of the game is to be the first to press the button when all the lights
turn on. Are your reflexes on point?

Recipe #4 - By the end of this activity, we will have a flashing dot (the
snake) moving around the screen (when micro:bit is tilted) catching the
static dots (the apples). Unlike the old mobile phone game, the
snake doesn’t grow as it feeds making it the worst snake ever!

8

Recipe #5 - By the end of this activity, we will have a single player reaction
game. The player has to quickly (and correctly) press button A or B based
on the arrow that appears on screen; they receive a score after 10 rounds.

Recipe #6 - By the end of this activity, you will have a game that requires
the player to tilt the micro:bit to guide
their flashing dot through a maze drawn on the LED screen.

What is Makewav.es?

Makewaves is the safe social badging platform for schools that enables pupils to easily and safely
earn and display Open Badges. Join the Makewaves badging community to enable your pupils to
access a range of exciting badge challenges from a wide mix of partner organisations that range
from STEM organisations such as the Royal Observatory Greenwich, health and wellbeing such as
NHS England and coding and computing, including Code Kingdoms.

Makewaves is free to join and includes free telephone training and support.
www.makewav.es/computingcurriculum/join

To find out more about about Open Badges go to openbadges.org .

9

10

Recipe 1: Roll the Dice!

By the end of this activity, we will be able to shake a random number out of our micro:bit!

1. Click the button, and select

Why? We need the micro:bit to tell us when it’s been shaken!

2. Navigate to the micro:bit tab in the left sidebar

Where? The micro:bit tab is the first button at the top of the sidebar

3. Drag the chunk from the menu so that it is

within the onShake event

Hint: When dragging, wait for the black and orange placeholder to appear before dropping

4. Navigate to the Library tab in the left sidebar

 Where? The Library tab has the book icon in the sidebar

5. Choose the Random library

6. Drag from the menu so that it
replaces the in the chunk of program

7. Click on the arrow next to and enter 1.
Repeat this step for , entering the number 6.

Add Event onShake

say

number(min, max)

say value

min

max

11

Recipe 2: Mood Swings

By the end of this activity, we will have a micro:bit that is sad when it is tilted away, and happy

when it is facing us!

1. Navigate to the Language tab in the left sidebar

Where? The Language tab has the loop icon in the sidebar

2. Drag the chunk from the sidebar until it is

part of the onStart event

3. Click on the menu inside the

chunk, and choose the option at the top of

the list

Why? A while-true loop is used when we want to repeat something forever. In our case, this means until the micro:bit

is reset or runs out of power! Since the micro:bit will never stop smiling or frowning in this recipe, we use a while-true

loop to make sure the program runs continuously by repeating forever.

4. Drag an chunk from the sidebar until it is part of

the while loop

Hint: When dragging, wait for the black and orange placeholder to appear before dropping

5. Click on the menu inside the chunk,

and choose the option

Why? We want to check whether the micro:bit’s tilting sensor (accelerometer) is detecting that it is being held level

6. Navigate to the micro:bit tab in the left sidebar

while

condition

true

while

if

condition if

 ==

12

7. Scroll down until you find the c chunk, and drag

it into the part of the if condition

Why? The micro:bit can check whether it is being tilted side to side (the x-direction) or forwards and backwards (the y-

direction). In this recipe, we will be checking the y-direction so we use the tiltY chunk instead of tiltX.

8. Click on the arrow in the part of the if

condition, choose a value and enter 2

Why? The micro:bit expresses how much it is tilted by a number. In the x-direction (side to side), the left hand side of

the screen is given the number 0 and the far right hand side is given the number 4. This means the middle column

actually has the number 2! The same is true for the y-direction (top to bottom); the top ’row’ of the screen is given the

number 0, and the bottom the number 4, which means the middle ‘row’ has the number 2.

9. Navigate to the micro:bit tab in the left sidebar

10. Drag the chunk from the sidebar until it is

part of the if chunk we have just made

11. Click on the menu inside the chunk

and choose the neutral face

12. Save the if chunk as a snippet by dragging the if

chunk into the bottom half of the left sidebar.

13. Drag this saved snippet out of the sidebar into the

while loop. Do this once more. You should now

have three consecutive if chunks inside the while

loop.

Why? We need three if chunks because we need to check whether the micro:bit is being tilted forward, back, or not at

all.

14. Click on the menu inside the second

chunk, and choose the option.

Why? This if chunk will deal with the case when the micro:bit is tilted away from the player

tiltY

left

right

Number

draw

draw pattern

condition if

<

13

15. Click on the menu inside this chunk

and choose the sad face

16. Click on the menu inside the third

chunk, and choose the option.

Why? This if chunk will deal with the case when the micro:bit is tilted towards the player

17. Click on the menu inside this chunk

and choose the happy face

draw pattern

draw pattern

condition if

 >

14

Recipe 3: Flashpoint

By the end of this activity, we will have a micro:bit that will start a 2-player game when shaken.

The aim of the game is to be the first to press the button when all the lights turn on. Are your

reflexes on point?

This may sound daunting at first, but programmers like to break down big, hard problems into

smaller, more manageable problems. Once that’s done, all we need to do is solve the smaller

problems and put them all together!

In this game, there are four parts we need to figure out: what we need to keep track of

throughout the game; what to do when the micro:bit is shaken; what to do when player 1 presses

their button; and what to do when player 2 presses their button. All of these together make up

the whole game!

Let’s start with setting up the game.

1. Navigate to the Library tab in the left sidebar and

select the globals section

Where? The Library tab has the book icon in the sidebar

2. Click the icon, and give the variable the name

readyForNewGame

Why? We need to keep track of when a game is being played, otherwise the game would restart in the middle of a

game if the micro:bit is shaken! Because this value can change at any time, we call it a variable, and since we want to be

able to change it from anywhere in the program, we call it a global variable. Make sure your variables have descriptive

names!

3. Drag the readyForNewGame chunk from the

sidebar until it is part of the onStart event

4. Click on the menu next to the

readyForNewGame chunk, and choose the

option at the top of the list

Why? When the program first starts, we are ready to start the game! This will change once the game is started.

true

update

15

Now!let’s!tell!the!micro:bit!what!to!do!if!shaken.!

1. Click the button, and select

Why? We need the micro:bit to tell us when it’s been shaken!

2. Navigate to the Language tab in the sidebar

3. Drag an chunk from the sidebar so it is within

the onShake event

4. Click on the menu inside the chunk,

and choose the variable in the

bottom section of the menu

Why? This will check whether the readyForNewGame variable is set to true before running the rest of our program

5. Navigate to the Library tab in the sidebar

6. Choose the Globals library

7. Drag the chunk from the

sidebar until it is part of the if chunk

8. Click on the menu next to the

readyForNewGame chunk, and choose the

option from the list

Why? Now that we’re starting a game, we can set the value of readyForNewGame.to be false so no new games can

start

9. Navigate to the micro:bit tab in the sidebar

if

if condition

Add Event onShake

false

update

readyForNewGame

readyForNewGame

16

10. Drag the chunk from the menu into the

chunk

11. Change the inside the chunk to a

String of your choice, for example: “3… 2… 1…”

12. Drag the chunk from the sidebar under

13. Navigate to the Language tab in the sidebar

14. Drag the chunk from the sidebar under

15. Navigate to the Library tab in the left sidebar

16. Choose the Random library

17. Drag from the menu so that it

replaces the in the chunk

18. Click on the arrow next to and enter 5000.

Repeat this step for , entering the number

10000.

Why? We want the micro:bit to wait a different amount of time each game (otherwise it would be boring!) between 5

and 10 seconds. Note that wait is given the time in milliseconds, so half a second is 500, one second is 1000 and so on.

19. Navigate to the micro:bit tab in the sidebar

20. Drag the draw chunk from the sidebar to under the

wait chunk, choosing all the lights to be turned on

by clicking on the Pattern

if say

say

value

clear

wait clear

number(min, max)

milliseconds wait

min

max

say

17

Now all that’s left is to let the micro:bit know what to do when the buttons are pressed.

1. Click the button, and select

2. Drag the chunk from the Language tab into

the event

3. Navigate to the micro:bit tab in the sidebar

4. Drag from the bottom of the sidebar so
that it replaces the in the chunk

5. Click on the arrow next to and enter a number
0. Repeat this step for , entering the
number 1.

Why? If the LEDs are on, the player has won, otherwise they’ve pressed the button too early and lost! We don’t need to

look at all the LEDs, since the one at the (0,1) position will only be turned on in this program when all the LEDs are on!

6. Navigate to the micro:bit tab in the sidebar

7. Drag the chunk from the sidebar into the

top half of the chunk

Add Event onPressA

if-else

onPressA

isOn(x, y)

condition if

x

y

if

draw

18

8. Click on the menu inside this chunk

and choose the arrow pointing to the left

9. Drag a chunk from the sidebar into the

bottom half of the chunk

10. Click on the menu inside this chunk

and choose the cross pattern

11. Drag another chunk from the sidebar into the

bottom half of the chunk

12. Click on the menu inside this chunk

and choose the arrow pointing to the right

13. Drag the chunk from the Language tab in

between the two chunks in the bottom half

of the chunk

14. Click on the arrow next to the in the
wat chunk, and type in 1000

Why? Button A is on the left of the micro:bit so the arrow will point towards the player when they’ve won and to the

other player (on the right) if they lose! We add a wait so that there is a second for both players to see who has won!

15. Navigate to the Library tab in the sidebar

draw pattern

draw pattern

draw

if

if

draw

draw pattern

draw

draw

if

wait

milliseconds

19

16. Choose the Globals library

17. Drag the chunk from the

sidebar until it is part of the event, after

the chunk

18. Click on the menu next to the

………………………………… chunk and choose the

option at the top of the list

Why? Now that we’ve finished a game, we can set the value of readyForNewGame to be true so new games can start!

For the B button, Click the button, and select and repeat the steps above,

just reversing the direction of the arrows in Step 8 and Step 12.

readyForNewGame

update

onPressA

if

readyForNewGame true

Add Event onPressB

 Recipe 4: Worst. Snake. Ever

By the end of this activity, we will have a flashing dot (the snake) moving around the screen (when
micro:bit is tilted) catching the static dots (the apples). Unlike the old mobile phone game, the
snake doesn’t grow as it feeds making it the worst snake ever.

Section 1

1. We need a few variables to store certain
values within the game. We need to give
them initial values here. Score starts
from a high number and decreases the
longer the player plays (which means
quicker times get higher scores); posX
and posY keep track of the player’s dot;
appleX and appleY keep track of the
apple; and level is the current level.

2. We don’t want the game to run
continuously, so we put a condition
inside the while loop so that the loop only
runs when the level variable is less than
10.

3. We need a way to differentiate between

the player’s dot and the apple. One way
to do this is to flash the player’s dot by
turning it off and on again (with a small
wait so the player notices!)

4. Refresh the screen to make sure that the

LEDs for the player’s dot and apple are
on.

20

Section 2

1. If the player’s dot has the same x- and y-coordinate, it means they’re on top of each other
so the player has successfully collected the apple. Reward!

2. Update the ‘levels’ variable
because the player has found
the apple.

3. Pick a new, random position

for the apple, ready for the
next level!

4. Get rid of the old dots and
reward smiley face.

21

Section 3

1. If the micro:bit is being tilted
to the left, turn off the old
player dot, and update the
posX variable to reflect that it
needs to move left.

2. If the micro:bit is being tilted
to the right, turn off the old
player dot, and update the
posX variable to reflect that it
needs to move right.

Hint: Looking at these if chunks you may see a pattern! This is where using the Snippets tab might
be useful to allow you to easily reuse chunks of code you’ve written!

22

Section 4

1. If the micro:bit is being
tilted down, turn off the
old player dot, and update
the posY variable to
reflect that it needs to
move down.

2. If the micro:bit is being
tilted up, turn off the old
player dot, and update
the posY variable to
reflect that it needs to
move up.

3. Decrease the score by
one every time the loop is
run.

4. This is outside the while

loop, which means the
player must have picked
up ten apples, so tell the
player their score.

23

Recipe 5: Quickfinger

By the end of this activity, we will have a single player reaction game. The player has to quickly (and
correctly) press button A or B based on the arrow that appears on screen; they receive a score after
10 rounds.

Section 1

1. Create a variable to keep
track of the score.

2. We want to repeat

something a specific
amount of times, so we
use a for loop with our
loop counter ‘i’ going
from 3 down to 1.

3. Display the loop counter

variable with a 1 sec
pause in between so it
becomes a countdown.

24

Section 2

1. The game lasts 10 rounds so we use another for loop using a loop counter called ‘round’.

2. Clear the screen.
3. Wait a little while - note the waiting time gets

smaller as the rounds go by (as the loop
counter ‘round’ will start from 10 and go
down to 1).

4. Choose which direction to point randomly.

5. If it’s decided to be 0, we say that’s left and

show the correct arrow accordingly.

6. If it’s decided to be 1, we say that’s right and
show the correct arrow accordingly.

25

Section 3

1. If we displayed left, and the
player pressed button A,
give them a point by
increasing their score by 1.

2. If we displayed right, and
the player pressed button B,
give them a point by
increasing their score by 1.

3. We are outside of the for
loop, so we must have
finished all ten rounds!
Display the player’s score.

26

Recipe 6: Maze Runner

By the end of this activity, you will have a game that requires the player to tilt the micro:bit to guide
their flashing dot through a maze drawn on the LED screen.

Section 1

1. Draw the maze you want players to
solve - be sure there is a place to start
and place to finish!

2. Store the player's current position in

two variables, called posX and posY.
3. Set them to be wherever the player's

dot should start.

4. The game will only end when the puzzle
is solved, so use a while-true loop to
keep the game running forever.

5. We need a way to differentiate between
the maze and the player's dot (given by
the posX and posY variables). One way
to do this is to have the player's dot
flashing, by turning it off briefly and
then on.

27

Section 2

1. If the micro:bit is being tilted in the right direction, and the player's dot is at the end of the
maze then the maze puzzle has successfully been completed. Draw a happy face and then
end the program!

28

Section 3

1. If the micro:bit is being tilted to the
left (and it's not on the edge), check
that the LED at the point the player
dot wants to move to is not on.

2. If it is, the player has hit a wall and

the game is over (so turn the
gameOver variable to true),
otherwise update the player's dot
position (given by posX and posY) to
be one left of where it was. Turn the
LED at the player's old dot position
off.

3. If the micro:bit is being tilted to the
right (and it's not on the edge),
check that the LED at the point the
player dot wants to move to is not
on.

4. If it is, the player has hit a wall and

the game is over (so turn the
gameOver variable to true),
otherwise update the player's dot
position (given by posX and posY) to
be one right of where it was. Turn
the LED at the player's old dot
position off.

29

Section 4

1. If the micro:bit is being tilted up (and it's not
at the top), check that the LED at the point
the player dot wants to move to is not on.

2. If it is, the player has hit a wall and the game

is over (so turn the gameOver variable to
true), otherwise update the player's dot
position (given by posX and posY) to be one
above where it was. Turn the LED at the
player's old dot position off.

3. If the micro:bit is being tilted down (and it's

not at the bottom), check that the LED at
the point the player dot wants to move to is
not on.

4. If it is, the player has hit a wall and the game

is over (so turn the gameOver variable to
true), otherwise update the player's dot
position (given by posX and posY) to be one
below where it was. Turn the LED at the
player's old dot position off.

30

Section 5

1. If after all these checks about the tilting, the
gameOver variable was set to true (because
the player hit a wall), draw a sad face to let the
player know and exit the program!

31

Challenges & Solutions

Recipe 1: Roll the Dice Recipe 2: Mood Swing

32

Recipe 3: Flashpoint

33

