
Code Kingdoms

for kids, with kids, by kids.

codekingdoms

Unit 1 Introducing Code Kingdoms

Resources overview

We have produced a number of resources designed to help people use Code Kingdoms. There are
introductory guides to all parts of the product and classroom materials to help teach lessons around
Code Kingdoms.

Code Kingdoms
Learning: What, where,
when and how

A summary of the Code Kingdoms approach
to learning.

Teacher Guide An overview for teachers. Describes the Code
Kingdoms learning ethos and details the
different parts of the product.

Dashboard Guide A beginner’s guide to using our group
management tool. Describes everything from
registering for an account to assessing the
progress of your kids.

Sandbox guide A guide to using our unstructured creation
environment. Learn everything from using
the menus to making great puzzles.

Unit 1: Introducing Code
Kingdoms

An introductory unit of six ‘off-the-shelf’
lesson plans. Targeted at KS2 kids.

Unit 2: Learning a
language

Six ‘off-the-shelf’ lesson plans designed to
teach kids the basic of JavaScript

Puzzle Packs A guide to building specific puzzles in Creative
mode. Step-by-step instructions from start to
finish. Four puzzles per pack.

Contents

About this guide 2

Unit Plan 3

Lesson 1 6

Lesson 2 9

Lesson 3 13

Lesson 4 17

Lesson 5 21

Lesson 6 21

Map Creation Checklist 26

Map Creation Assessment Sheet 27

1

About this guide

This scheme of work contains six one hour lesson plans, a medium term plan for the unit and some
accompanying assessment grids. It is designed as an introduction to Code Kingdoms and can be used
across the age ranges. The lesson plans are meant to be flexible, rather than prescriptive, to allow
teachers to adapt it as they see fit.

This unit develops skills in three strands of learning: JavaScript, Computational Thinking & Computing.
The learning outcomes for each lesson are categorised in these three areas. The unit culminates in the
kids building their own map which will allow them to demonstrate their learning throughout the unit.

Resources
To teach this unit you will require the following resources:

● CK School - school.codekingdoms.com

● CK Dashboard - dashboard.codekingdoms.com

You may find our supporting guides useful. They are found at codekingdoms.com/teachers

● Dashboard guide - how to use the teacher management tool to plan and set activities

● Sandbox mode guide - how to use the creation environment to complete lesson plan activities

2

Unit Plan

 Lesson Title Outcomes

Commands, cause and
effect and parameters

I understand how to execute basic JavaScript.

 I understand how parameters can affect the output of a
function.

I know that computers need precise instructions.

I can run, check and change programs.

Spikes and buttons

I understand how parameters can affect the output of a
function.

I understand how to use JavaScript functions to achieve
my aims.

Writing instructions that if followed in a given order
(sequences) achieve a desired effect.

Assessing that an algorithm is fit for purpose;

I can find and correct errors i.e. debugging, in algorithms.
I can use logical reasoning to predict the behaviour of
programs.

3

 Lesson Title Outcomes

Glitch Behaviour 1

I understand how to use JavaScript functions to achieve
my aims.

Writing instructions that if followed in a given order
(sequences) achieve a desired effect.

Assessing that an algorithm is fit for purpose;

I can find and correct errors i.e. debugging, in algorithms.

I can use logical reasoning to predict the behaviour of
programs.

Glitch Behaviour 2

 I understand how parameters can affect the output of a
function.

I can explain how to use a while loop to solve a practical
problem.

Writing instructions that repeat groups of constituent
instructions (loops/iteration) to achieve a desired effect;

Breaking down artefacts into constituent parts to make
them easier to work with;

I know that algorithms are implemented on digital
devices as programs.

I can design simple algorithms using loops, and selection
i.e. if statements.

I can use logical reasoning to predict outcomes.

I can use arithmetic operators, if statements, and loops,
within programs.

4

 Lesson Title Outcomes

Creating your own map

I understand how to use JavaScript functions to achieve
my aims.

I can explain how to use a while loop to solve a practical
problem.

Writing instructions that if followed in a given order
(sequences) achieve a desired effect.

Writing instructions that repeat groups of constituent
instructions (loops/iteration) to achieve a desired effect;

Breaking down artefacts into constituent parts to make
them easier to work with;

Assessing that an algorithm is fit for purpose;

I know that algorithms are implemented on digital devices
as programs.

I can design simple algorithms using loops, and selection
i.e. if statements.

I can use logical reasoning to predict outcomes.

I can find and correct errors i.e. debugging, in algorithms.

I can use logical reasoning to predict the behaviour of
programs.

5

Lesson One

Commands, Cause and Effect and Parameters

 Lesson Title Outcomes

Commands, cause and
effect and parameters

I understand how to execute basic JavaScript.

 I understand how parameters can affect the output of a
function.

I know that computers need precise instructions.

I can run, check and change programs.

6

Lesson Activities

 Activity Notes

Introduction (7-10 mins)

1. Discussion incorporating key questions:
○ What is Coding/Programming?
○ What things use Coding?
○ Why is Coding useful?

2. Ask the kids to think about what a command is and where

they are used. Lead them to real-world examples from the
classroom (“pens down” “not talking”) and common
commands given to dogs.

○ Code is a language that a machine
understands to allow it to perform
tasks that it was designed for. We
use commands to tell these
machines what to do. Different
machines understand different
languages. A food recipe is a piece of
code that a human can understand
and use to make lunch!

○ Example devices include mobile

phones, manufacturing robots, cars,
alarm clocks, rockets. Uses include
making games, the internet and
online shopping, cutting the carpet
tiles the right size for the classroom.

Using Commands (15 mins)

1. Kids login to Code Kingdoms and complete two Adventure
packs from the Dashboard. This should familiarise kids
with the format of the problem-solving aspect of Code
Kingdoms.

2. Ask kids to identify any commands they come across/use.

3. Pool the list of commands kids encountered in when

playing Adventures.

○ Ensure kids are aware where the
code features in interactions with
characters.

7

 Activity Notes

Introduce Cause and Effect (15 mins)

1. Explore what cause and effect is using real-world
examples [if you drop a pencil it will fall, press a light
switch light will turn on]

2. Set two more Adventure packs and ask kids to spot at

least two cause and effects in the world.

3. Pool causes and effects encountered in the game and ask
kids to come up with a cause and effect they have
experienced in the real-world today.

○ Provide kids with an example of
cause and effect in the game. e.g.
Codeling stands on a button causing
a bridge to raise.

○ Number of Adventure packs set can

be adjusted according to time.

Introduce Parameters (15 mins)

1. How did the Codelings move? Direction? Speed? Ask kids
to think about why these might be different.

2. Kids list the four compass directions that are used as

parameters in the game.

3. Play the next map and identify any parameters they come
across. Give them examples such as speed and direction
that are given to Codelings.

Plenary (5 mins)

1. In pairs kids act as a robot and a coder and carry out the
following:

○ give a command (e.g. talk, jump etc.)
○ a cause and effect (when I clap, you jump)
○ a parameter (walk in a certain direction)

2. Switch roles and repeat.

○ Alternative: teacher/chosen kid calls
out a mixture of commands, cause
and effect and parameters for the
whole class. kids act out instruction
and call out whether they think it
involves a command, cause and
effect or parameter.

8

Lesson Two

Spikes and Buttons

 Lesson Title Outcomes

Spikes and
buttons

I understand how parameters can affect the output
of a function.

I understand how to use JavaScript functions to
achieve my aims.

Writing instructions that if followed in a given order
(sequences) achieve a desired effect.

Assessing that an algorithm is fit for purpose;

I can find and correct errors i.e. debugging, in
algorithms.
I can use logical reasoning to predict the behaviour
of programs.

9

Lesson Activities

 Activity Notes

Introduction (7-10 mins)

1. Identify sequencing as putting things in the correct order.
Ask kids to think of criteria for sequencing class members
and then to sequence themselves according to their
criteria (e.g. height order, birthdays etc.)

2. Ask kids why sequencing programming instructions might

be important. To guide their thinking as them to think
what would happen if the following were to be sequenced
incorrectly:

○ Open door
○ Walk through doorway
○ Close door

○ One kid could call out the

commands in the wrong order and
ask another kid to follow the
commands.

○ Crossing the road is a suitable
alternative to walking through a
doorway.

Kids play introductory Adventures (10 mins)

1. Kids login to Code Kingdoms and complete two Adventure
packs to remind themselves of the game functionality and
computational thinking required.

2. Tell kids they will be creating their own maps and should

think about what they might do if they had to create a
map.

○ Ensure kids are aware where the
code features in interactions with
characters.

10

 Activity Notes

Introduce OOSY Method in Sandbox (15 mins)

1. Set Sandbox mode from the Dashboard and ask kids to

work out the aim of the map they are looking at.
○ Objective -release the animal from the cage -

point out the cage in the map.

2. Next lead them through the framework for creating
meaningful maps using examples.

○ Obstacle - place spikes to block access to the
bridge - impossible to complete!

○ Solution - place button and add code to it.
○ Your Turn! - give the map to someone else to test

it.

3. Kids replicate the obstacle (spikes) and solution (button)
on their own computers.

○ Display OOSY Method clearly in the
classroom as it will be referred to
extensively as kids progress
through the unit.

The 3Ws for structuring algorithms (15mins)

1. Using the initial button and spikes example, help kids

structure their commands:
○ When? the button is pressed onPress
○ Who? SpikesA
○ What? lower()

2. Add complexity to the spike obstacle:

○ Select button onRelease
○ Choose Spikes and drag in SpikesA.raise();
○ Try playing it - impossible!

3. Ask kids to come up with a solution to solve the puzzle on
their own island templates.

○ Display the 3Ws in the classroom
alongside the OOSY Method as it
will help kids structure their
algorithms.

○ Depending on ability/experience
kids may need to be guided to
placing the crate to keep the
button pressed down.

11

 Activity Notes

Plenary (10mins)

1. Kids use the 3Ws to describe some character behaviour
they would like to see in next lesson in a sentence. E.g.
When button is pressed the cat jumps.

2. Peer assess each others sentence checking for algorithm

structure and spelling, punctuation and grammar.

○ Retain kids’ 3Ws sentences in
preparation for next lesson.

12

Lesson Three

Glitch Behaviour 1

 Lesson Title Outcomes

Glitch Behaviour 1

I understand how to use JavaScript functions to
achieve my aims.

Writing instructions that if followed in a given order
(sequences) achieve a desired effect.

Assessing that an algorithm is fit for purpose;

I can find and correct errors i.e. debugging, in
algorithms.

I can use logical reasoning to predict the behaviour
of programs.

Cross-curricular links: Development of literacy skills in plenary activity. Calculating speed for Glitch
movement.

13

Lesson Activities

 Activity Notes

Introduction (5 mins)

1. Recap the OOSY Method, what it stands for and how it is
used when creating maps.

2. Kids review their sentences from the previous lesson’s
plenary to remind them how to use the 3Ws when
structuring an instruction.

3. Tell kids they will be coding character behaviour and that
the 3Ws will be important.

Create simple obstacle & solution (10 mins)

1. Load the Sandbox mode and place 3 Glitches in the map
as an obstacle to reaching the cage.

2. Ask kids to copy the demonstrated template and to come

up with a simple solution to get past the Glitches on their
own computers.

14

 Activity Notes

Kids code Glitch behaviour (15 mins)
1. Using the 3Ws demonstrate coding some basic Glitch

behaviour. E.g.
○ When? onCreate
○ Who? GlitchA
○ What?GlitchA.walkTowards(player);

2. Kids give some basic behaviours to their own 3 Glitches.

These might include - walk(direction),
walkTowards(object) and jump

3. Kids will likely find their Glitches are moving too slowly so

they can adjust their speed. Speed is measured in metres
per second (roughly one square per second) - kids can
experiment with different speeds for their Glitches.

○ Opportunity for kids to differentiate
for themselves based on the
difficulty of behaviour they select.

○ Speed can be adjusted when the

Glitch is selected in Editor mode.
Speed is listed under the Motion
heading in the Sequencer.

Kids code more complex behaviours (15 mins)

1. Adding to the existing sequence for Glitch behaviour, kids
code a Glitch to return it to its starting position.

2. Kids can then add further sequenced commands to their

Glitches at their own pace. At this point kids may want to
refer to their sentences from last lesson’s plenary to see if
they are able to code the behaviour they described.

○ Kids encouraged to plan the order
they want the Glitch behaviours to
be seen so that they are sequenced
correctly in the code.

○ Remind kids to stick to the 3Ws

even when they have freedom to
decide on their Glitch behaviour.

15

 Activity Notes

Plenary (10 mins)

1. Kids write at least 4 correctly-sequenced instructions they
would like to give to Glitches/Animals in the next lesson.

2. Peer assess each others sentences checking for

sequencing spelling, punctuation and grammar.

○ Written in full sentences rather
than code.

○ Retain sentences for subsequent
lesson.

16

Lesson Four

Glitch Behaviour 2

 Lesson Title Outcomes

Glitch Behaviour 2

 I understand how parameters can affect the
output of a function.

I can explain how to use a while loop to solve a
practical problem.

Writing instructions that repeat groups of
constituent instructions (loops/iteration) to achieve
a desired effect;

Breaking down artefacts into constituent parts to
make them easier to work with;

I know that algorithms are implemented on digital
devices as programs.

I can design simple algorithms using loops, and
selection i.e. if statements.

I can use logical reasoning to predict outcomes.

I can use arithmetic operators, if statements, and
loops, within programs.

Cross-curricular links: Development of literacy skills in plenary activity. Calculating speed for Glitch
movement.

17

Lesson Activities

 Activity Notes

Introduction (5-7 mins)

1. Kids review previous lesson’s plenary sentences to remind
themselves of sequencing commands.

2. When introducing the next task explore through

questioning what the term ‘efficiency’ means and how it
could help when coding.

Patrolling Glitches (12-15mins)

1. Load Sandbox mode and ask kids to think about what
might be a good obstacle for this map - lead them to the
idea of patrolling Glitches.

2. Next ask kids to suggest a suitable place for the Glitch to

patrol so that it is an obstacle to completing the map but
not impossible.

3. How many code commands do we need for a Glitch to

patrol? What are they?

4. Kids give the Glitch those commands on their own
computers and asked to spot what is wrong with the code
commands as they are.

5. Kids easily adjust speed parameters as before so that the

Glitch is quick enough but the player can still pass to reach
the cage.

6. How could we repeat the behaviour more times? What is

an efficient way to code this?

○ 2 commands:
● GlitchA.walk(SOUTH);and
● GlitchA.walk(NORTH);

○ The problem with the code is the

Glitch moves too slowly and stops
after one patrol.

○ Kids will likely suggest repeating

the instructions again and again
but link back to earlier discussions
about efficiency.

18

 Activity Notes

Kids create while loops for efficient code (20
mins)

1. Introduce while loops (also called forever loops) using
real-world examples - we forever loop through the same 7
days of the week, the moon always orbits the Earth, a heart
is always beating (during life).

2. In the Sequencer, demonstrate how a while loop is used

with the existing north / south commands to make the
Glitch patrol continuously (shown on the right).

3. Kids create their own while loop for patrolling Glitches in

the same location as demonstrated.

4. Then create their own while loop for a second Glitch in a
different location.

○ While loops are found under the
‘Language’ tab of the Sequencer.

Using spikes & buttons with patrolling Glitches (12
mins)

1. In some locations it will be impossible for the player to pass
a patrolling Glitch. Ask kids to think about the methods
they have used in previous lessons to provide solutions to
obstacles.

2. Tell the kids they will be creating their own map in the next

lessons and they should be as creative with their solution
as possible.

○ The most straightforward solution
that kids can be guided to is luring
a Glitch onto some raised spikes.

19

 Activity Notes

Plenary (5mins)

1. Kids each describe 3 real-world examples where they think
while loops are used or would be useful.

20

Lessons Five and Six

Creating your own map

This section can be delivered as a double period or two distinct lessons, as such prescribed timings are
flexible. It consolidates kids’ learning from the unit allowing them to display their learning by creating
their own map..

 Lesson Title Outcomes

Creating your own
map

I understand how to use JavaScript functions to achieve my
aims.

I can explain how to use a while loop to solve a practical
problem.

Writing instructions that if followed in a given order (sequences)
achieve a desired effect.

Writing instructions that repeat groups of constituent
instructions (loops/iteration) to achieve a desired effect;

Breaking down artefacts into constituent parts to make them
easier to work with;

Assessing that an algorithm is fit for purpose;

I know that algorithms are implemented on digital devices as
programs.

I can design simple algorithms using loops, and selection i.e. if
statements.

I can use logical reasoning to predict outcomes.

I can find and correct errors i.e. debugging, in algorithms.

I can use logical reasoning to predict the behaviour of programs.

21

Cross-curricular links: Survey design. Time management. Self-assessment in plenary.

Lesson Activities

 Activity Notes

Introduction (7 mins)

1. In preparation for building their own map, ask kids to think
about their favourite Code Kingdoms environment they
have played. They should list what they liked about it most
and if there was anything they would change.

Planning / Design (15-20 mins)

1. Share the checklist / assessment criteria with kids.

2. Remind them of the OOSY Method and ask them to plan
their map objective and at least 3 obstacles with solutions.

3. Kids should be encouraged to incorporate aesthetic design

by choosing a theme for their map and deciding on some
decorative items.

○ E.g. coastal, mountain, tundra,
grassland, glitchy, forest. Depending
on the kids’ capabilities they can be
allowed to create their map from
the existing Sandbox template
rather than designing from scratch.

22

 Activity Notes

Implementation (30 mins)

1. Kids build their map making reference to OOSY, 3Ws and
assessment criteria.

2. Encourage kids to plan their time as well as their map

structure so they don’t spend too long decorating their
map or adding too many coins or potions.

Survey design (15 mins)

1. Kids design a survey for people playing their map.
Minimum key questions to ask testers:

○ Was the map fun?
○ Could you complete the map?
○ Was it too easy/too difficult/just right?
○ What could make the map better?

2. Tell kids they will be creating their own map in the next

lessons and they should be as creative with their solution
as possible.

○ This stage can be given greater /
less emphasis depending on how
survey design fits into your kids’
current programme of study.

Testing/Debugging (10 mins)

1. Once kids have coded at least 2 obstacles in their map they
should give it to a partner to play and test its effectiveness.

2. Testers should fill in the designers survey after playing.

23

 Activity Notes

Improvements and Analysis (Plenary) (20-30 mins)

1. Kids finish building their map taking into account the
feedback from the survey.

2. Kids complete a self-assessment of their map against the

assessment criteria.

24

Map Creation Checklist

Tick off the following when you have included each one in your plan and your completed map design.
The peer review column is for the person checking your map.

 In your
plan?

In your
map?

Peer review

You have chosen your terrain

There is a cage to end the map

You have an obstacle that uses one line of code
○ E.g. spikes lower when a button is pressed

You have an obstacle that uses more than one line of
code

○ E.g. spikes lower when a button is pressed and
raised when depressed

You have an obstacle that uses a while loop
○ E.g. a patrolling Glitch that doesn’t stop

You have sequenced your code commands correctly

All your obstacles have solutions
○ E.g. Glitches can be chased away

You have decorated your map using trees, shrubs, etc.

Your map can be completed by a player

25

What do you think are the best parts of your map?

What do you think could be improved?

What was the most complicated part of your map?

Describe 3 great things about this map.

Describe 3 things that could make this map even better.

26

Map Creation Assessment Sheet

Student: Red Amber Green

has designed their terrain well

has placed a cage at the end of their map (Objective)

has coded an obstacle using a simple algorithm
○ E.g. spikes lower when a button is pressed

has coded an obstacle using a more complex algorithm
○ E.g. spikes lower when a button is pressed and raised when

depressed

has coded behaviour using a while loop
○ E.g. a patrolling Glitch that doesn’t stop

has correctly sequenced commands in an algorithm

has provided solutions to ALL their obstacles

has considered the aesthetics of their map

has created a map that can be played and completed

The really great things about your map are:

Next time you need to improve:

27

Planning Your Own Map

You can use the OOSY Method poster to help you design your map.

What is the objective of your game?

What objects (characters) will there be in your game and what will they do?

E.g. Giant Glitch – chases player around the map and aims to destroy it.

What obstacles will there be in your game?

What solutions will there be for the obstacles?

Planning Algorithms

When you create your map, the different objects within your game will need instructions to tell them what to do. Use this worksheet to help

you consider what those instructions might be. An example has already been done for you.

Object When? Who? What?

ButtonA

onPress SpikesA Lower

The OOSY Method

When faced with a blank template and the task of creating a Code Kingdoms map many students will

find it difficult to create a playable map.

The OOSY Method will assist students' planning by scaffolding the method of building Code Kingdoms

maps.

OBJECTIVE First a student must think of an objective for their map. For simplicity in

our maps the player always has to reach the rocket.

OBSTACLE Now the pupil should put an obstacle in the way of reaching the objective

that makes the map impossible to complete. E.g. placing spikes on a

bridge as an impasse.

SOLUTION

Now think of a solution that will let the player get round the obstacle. E.g.

if the player places a lot of Glitches then they could now place a net

which the player can pick up and catch them with.

YOUR TURN! Share the map with friends to see if they can complete it!

The 3Ws

To assist students in thinking about structuring lines of code, we recommend using the 3Ws (When?
Who? What?)

When?

onCreate

Who? Glitch A

What? walk towards player

This will allow students to create an algorithm where a Glitch will walk towards a player when it is
created, which will look like:

GlitchA.walkTowards(player);

This method help students to sequence their commands logically.

